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Abstract

Purpose — This paper sets out to implement bounded high-order (HO) resolution schemes in a hybrid
finite volume/finite element method for the solution of the radiative transfer equation.
Design/methodology/approach — The hybrid finite volume/finite element method had formerly
been developed using the step scheme, which is only first-order accurate, for the spatial discretization.
Here, several bounded HO resolution schemes, namely the MINMOD, CLAM, MUSCL and SMART
schemes, formulated using the normalized variable diagram, were implemented using the deferred
correction procedure.

Findings — The results obtained reveal an interaction between spatial and angular discretization
errors, and show that the HO resolution schemes yield improved accuracy over the step scheme if the
angular discretization error is small.

Research limitations/implications — Although the HO resolution schemes reduce the spatial
discretization error, they do not influence the angular discretization error. Therefore, the global error is
only reduced if the angular discretization error is also small.

Practical implications — The use of HO resolution schemes is only effective if the angular
refinement yields low-angular discretization errors. Moreover, spatial and angular refinement should
be carried out simultaneously.

Originality/value — The paper extends a methodology formerly developed in computational fluid
dynamics, and aimed at the improvement of the solution accuracy, to the hybrid finite volume/finite
element method for the solution of the radiative transfer equation.
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Nomenclature

Ay, = area of a cell face normal to the kth  D;,, = coefficients of matrix D (equation (6d))
direction (m? E =number of control angle elements;

Ay = coefficients of matrix A (equation (6a)) absolute error

B, = coefficients of matrix B (equation (6b)) 7 = radiation intensity (W m™ 2 sr™

C,, = coefficients of vector C (equation (6c)) K = number of spatial dimensions
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L = distance between the walls (m) D = scattering phase function
n = outer unit vector normal to the wall v = non-dimensional radiative heat flux
N = total number of angular nodes 0 = solid angle
r = position vector
s =unit vector in the direction of  Superscripts

propagation of radiation dc = deferred correction
T = temperature (K) e = control angle element
14 = volume (m°) HO = high-order
xp = coordinate along the kth direction (m) = angular node

~ = normalized variable

Greek letters
B = extinction coefficient (m ™) Subscripts
€ = emissivity b = blackbody
K = absorption coefficient (m ™Y C = central grid node
jis = direction cosine of the kth direction D = downstream grid node
o = Stefan-Boltzmann constant (W m~ 2 f = cell face

K™% k = coordinate direction
O, = scattering coefficient (m ™) m = angular node
T = optical thickness of the medium P = spatial grid node
b = basis function; non-dimensional U = upstream grid node

temperature field \4 = wall
Introduction

Radiative heat transfer is an important heat transfer mode in many combustion
systems, including boilers, furnaces, internal combustion and rocket engines, and also
in fires. Solar and atmospheric radiation are other important application areas. Many
radiation models have been developed over the years, such as the Monte Carlo (Howell,
1968), zonal (Hottel and Sarofim, 1967), spherical harmonics (Mengti¢c and Viskanta,
1985), discrete transfer (Lockwood and Shah, 1981), discrete ordinates (Fiveland, 1984)
and finite volume (Raithby and Chui, 1990) methods. Recently, a new hybrid model has
been developed that combines features of the finite volume and finite element methods.
The method was referred to as HYDRA, which stands for hybrid finite volume/finite
element discretization method for the solution of the radiative transfer equation (RTE),
or in short, hybrid discretization for radiation (Coelho, 2005a, b). The method may be
applied to both grey and non-grey media, non-scattering and scattering media, simple
and complex geometries. However, only radiative transfer in rectangular enclosures
with grey, emitting-absorbing and scattering media has been studied so far.

In the HYDRA method, the spatial and angular dependence of the radiation
intensity are split in such a way that the radiation intensity is approximated by a linear
combination of basis functions dependent only on the angular direction. The
coefficients of the approximation are functions of the spatial coordinates. The basis
functions are linearly independent functions, which are prescribed according to criteria
used in the finite element method. The angular discretization is carried out in such a
way that either the polar or the azimuthal angle remains constant along the boundaries
of the elements. This means that a classical polar/azimuthal discretization is carried
out, like in the finite volume method (FVM) and discrete transfer method (DTM)
method. However, in these methods the radiation intensity is constant over a control
angle or over a solid angle, respectively. Similarly, in the discrete ordinates method
(DOM), the RTE is solved for a set of discrete directions that span the total solid angle



of 47, and the integrals over that solid angle are replaced by numerical quadratures.
The radiation intensity is taken as constant for all directions related to a quadrature
weight. Therefore, the radiation intensity in the FVM, DTM and DOM is a directional
discontinuous function. On the contrary, in the present method the radiation intensity
is a continuously varying function, because the basis functions vary continuously
within the control angle elements, as well as across their boundaries. Bilinear basis
functions were chosen for the angular discretization.

The spatial discretization is performed using the FVM. Formerly, the step scheme
was employed to relate the cell face radiation intensities to the central grid
node radiation intensity (Coelho, 2005a, b). However, it is well known that the step
scheme, which is the counterpart of the well-known upwind scheme in computational
fluid dynamics (CFD), is only first order accurate, and causes numerical smearing.
In this paper, high-order (HO) resolution schemes are applied to the spatial
discretization, and two radiative heat transfer problems in enclosures with a grey
medium are solved.

Radiation model
The RTE for an emitting, absorbing and scattering grey medium may be written as:

K
S 0D i)+ ) +
= Xk

; s / I(r,s)d(S,s)dQY (1)

47T4

The spatial and angular dependence of the radiation intensity are split as:
N

I(r,8) = > 1" @) u(s) @)
m=1
where m stands for an angular node, as defined below. Inserting equation (2) into
equation (1) yields:
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Multiplying both terms of this equation by the basis function ¢,, and integrating over

all directions, the following set of N simultaneous integro-differential equations is
obtained:

LS N al™(r)
}; /4 ﬁw(s)(yy; n(®) =~ bu(s)dQ

N
= —B) I"(r) /4 bin(8)bu($)AQ + K I(x) /4 bu(s)dQ (4)
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This equation may be written as:
N S ORI
Z Z | ) A
k=1 \m=1 ,LLk(S) Ak

N N
_ 7 Ts l
=8 § I n(r)an + K[b(r)cn + ET ;:1 I (r)Dln

m=1

©®)

where matrices A, B, C and D have been introduced for conciseness. Their components
are given by:

Ay = /4 1)l (5100 (62)
By = A u(®)b()0 (6b)

C, = \ b, (s)dQ) (6¢)

Dy, = A A d)[(S/)(D(S/,S)dQ/(f)n(S)dQ (6d)

Equation (5) is discretized in space using the FVM in a Cartesian coordinate frame.
Integrating equation (5) over a control volume and applying the Gauss divergence
theorem yields the following equation:

3 (35 (- )

k=1 \m= (7)
=— BVZ I} By + &V I, pC, + VZ I,Dy,

m=1

A spatial discretization scheme is needed to relate the radiation intensity entering, L,
or leaving, I ., a cell face to the radiation intensity at the grid node, Ip. The mth
coefficient of the mean radiation intensity at cell face % is calculated using a HO
discretization scheme. This is implemented using the deferred correction procedure
(Khosla and Rubin, 1974), as follows:

]Z/L _ (IZ/,)Step_’_ |: (IZL)HO_(IZ/L)Step} _ (]Z/L)Step_i_(lzn)dc (8)

where the superscripts “step” and “dc” stand for the step scheme and for the deferred
correction intensity, respectively. The radiation intensity at a cell face and leaving a
control volume, evaluated according to the step scheme, is equal to the radiation
intensity at that control volume, i.e.:

()= ©)



Therefore, we may write:

na =1+ () 10)

Inserting these expressions into equation (7) yields:

> [ﬁ (8 = (1) (T~ 220) A

k=1 |m=1

11
= —BVZI’"BW + kVIop Gy + 1 VZI Dy,
m=1
which may be rewritten as:
N K
Z (ZAkAmn,k> + BVByn [m Z Z ( in, k) Ay + KV[b pCy
m=1 k=1 k=1 m=1 (12)
VZ [l DZ” Z Z ( outk :Z k) dCAk Amn.k

k=1 m=

If the step scheme is used, the last term on the right side is equal to zero and this
equation reverts to that derived in Coelho (2005a). If a HO scheme is employed, the last
term, which is treated explicitly, is non-zero.

The angular discretization is carried out as described in Coelho (2005a, b). The solid
angle of 477 around a grid node is discretized by means of lines of constant latitude and
longitude. The angular region limited by two adjacent lines of constant latitude and
two adjacent lines of constant longitude is referred to as a control angle element. The
points of intersection between lines of constant latitude and lines of constant longitude
are referred to as angular nodes. The basis functions are defined piecewise element by
element and are taken as a bilinear function over every control angle element. The mth
basis function is equal to 1 at the mth angular node and 0 at all the other angular nodes
(1 = m = N). The restriction of a basis function to a control angle element is referred to
as shape function and denoted by . In this way, only four of the /V basis functions are
different from 0 over a given control angle element, thus yielding four shape functions
defined over every control angle element ().. The calculation of the coefficients of
matrices A, B, C and D is carried out element by element, as in the finite element
method. The coefficients of the local element matrices are evaluated analytically,
except the coefficients of matrix D, which may require numerical integration,
depending on the scattering phase function. The local element matrices are assembled
to obtain the global matrices. Details of this procedure are given in Coelho (2005a, b).

The incident radiation at a grid node and the incident heat flux at a boundary are
also calculated element by element, as described in Coelho (2005a, b).

High-order resolution schemes

The spatial discretization of the term on the left side of the RTE, equation (1), requires
the calculation of the radiation intensity at the cell faces of a control volume.
This calculation may be accomplished using many different discretization schemes.
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A review of the schemes used in the DOM and FVMs for the solution of the RTE was
presented in Chai ef al (1994). In that work, it was argued that none of the available
schemes was satisfactory, and the step scheme was recommended, because of its
stability and boundedeness properties. Still, this is a first-order scheme, which is
the counterpart of the upwind scheme in CFD. It is well known that this scheme is prone
to false diffusion, a shortcoming that is also shared by the RTE, as discussed by
Chai et al. (1993).

More recently, it was realized that the spatial discretization of the term on the left of
the RTE is similar to the discretization of the convective term of the momentum
equations in CFD. Therefore, the discretization schemes developed in CFD may also be
applied to the RTE. In particular, bounded HO resolution schemes, such as, for example,
the MINMOD, CLAM, MUSCL and SMART schemes, may also be used in radiative
transfer. Formerly, these schemes were applied in the framework of the DOM (Jessee and
Fiveland, 1997). Here, we will apply these schemes to the recently developed HYDRA
method.

Bounded HO resolution schemes may be formulated using the diagram of normalized
variables, as described by Leonard (1997). A normalized radiation intensity, denoted
with a tilde, is defined as follows:

I —1Iy
Ip — Iy

where subscripts U and D identify the grid nodes associated with the upstream and
downstream control volumes, respectively. Denoting by f the cell face of a control volume
where we want to compute the radiation intensity and by C the grid node associated with
that control volume, the functional relationships for the schemes mentioned above are as
follows (Darwish, 1993):

]:

(13)

MINMOD:
1.51¢ if 0<I. <05
L={0051+L) if 05<I <1 (14)
Ic elsewhere
CLAM:
5 jc(z—jc) if 0<jc<1
=< 15
f Ic elsewhere (15)
MUSCL:
2lc if 0<Ic<1/4
. 02541 if 1/4<1I.<3/4
I = ) 1
7)1 if 3/4<Ic<1 {16)

Ic elsewhere



SMART:
3l if 0<Ic<1/6
5 (3/8) + @Ic/4) if 1/6 <. <5/6
=91 if 5/6<Ic<1 an
Ic elsewhere

These relationships are restricted to uniform grids, but may be generalized for
non-uniform grids (Darwish and Moukalled, 1994).

Results and discussion

One-dimensional isotropically scattering medium

The first test problem consists of a plane medium bounded by two parallel and
infinitely long walls. The medium neither absorbs nor emits, but scatters isotropically.
Hence, the scattering albedo is equal to one. The walls are maintained at a prescribed
temperature. The analytical solution is available (Heaslet and Warming, 1965). The
non-dimensional radiative heat flux, ¢, is given by:

qw (!fb
= = 18
P (- Ty T e+ (e ) a8
where the indices 1 and 2 refer to the walls, and i, is given by:
h=1-2[ g )Bur s 19)
0

Here, E,(x) stands for the exponential integral function of order » and ¢y, is the
non-dimensional temperature field for black walls, which may be evaluated from the
solution of the following equation:

1 L
i = [ B+ [T bt par )

Both ¢ and 4, are independent of the temperature of the walls, and 4, is independent
of the emissivity of the walls.

The results of the calculations performed using 20 control volumes and 2 X 2,
3 X 3,4%X 45 x5and6 X 6(4,9,16, 25 and 36, respectively) control angle elements
per octant are shown in Figure 1. The walls are black in Figure 1(a) and (b) and grey,
with &1 = 0.8 and &, = 0.5, in Figure 1(c) and (d). Calculations were performed for
optical thicknesses, based on the distance to the walls, of 0.1, 0.5, 1.0 and 5.0, but only
the results for 7, = 0.1 and 7;, = 5.0 are reported here. It can be seen that the results are
qualitatively similar in both cases.

The predicted non-dimensional radiative heat flux is approximately independent of
the discretization scheme in the case of an optically thin medium (7;, = 0.1), and the
numerical solution tends to the analytical one as the number of control angle elements
increases. Notice that, in the limit of a transparent medium (7; = 0), the radiation
intensity along a given direction would be constant, and all the schemes would give
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Figure 1.
Non-dimensional radiative
heat flux in a
one-dimensional
isotropically scattering
medium bounded by two
parallel infinitely long
walls (a) black walls,

77, = 0.1; (b) black walls,
7, = 5.0; (c) grey walls,
77, = 0.1; (d) grey walls,
T = 5.0
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exactly the same solution. Therefore, a crude discretization scheme, like the step
scheme, performs satisfactorily, and no visible increase in accuracy results from using
HO schemes.

In the case of an optically thick medium, the radiation intensity changes along the
direction of propagation, but slowly. The step scheme performs well for a small number
of control angle elements, but the solution accuracy decreases if that number increases.
This reveals that the lower error observed for a small number of angular elements is not
due to a low-spatial discretization error, but rather due to a compensation between
spatial and angular discretization errors, which have opposite effects. This
compensation effect between spatial and angular discretization errors was formerly
discussed by Raithby (1999) in the framework of the FVM, and by Coelho (2002) for the
DOM. In these three methods for the solution of the RTE, namely HYDRA, FVM and
DOM, the spatial discretization is performed using finite volumes. The angular
discretization differs, such that the finite element method is used in HYDRA, the FVM is
used in the FVM, and an Sy quadrature is generally used in the DOM, although other
alternatives are available. However, in these three methods, the opposite effects of
spatial and angular discretization errors have been observed. If the number of control



angle elements increases, the angular discretization error becomes smaller, and no
longer compensates the spatial discretization error of the step scheme, which becomes
dominant. Accordingly, the solution error increases.

If HO discretization schemes are used, the solution error is large for a small number
of control angle elements, because the spatial discretization error is small, but the
angular discretization error is large. The angular refinement improves the solution
accuracy. The difference between the various HO discretization schemes is hardly
visible for this test case.

The computational requirements increase with the increase of the optical thickness
of the medium, and they are higher for grey walls than for black ones. The HO
resolution schemes yield an increase of the CPU time by a factor of 2.5 up to 7
compared with the STEP scheme, depending on the optical thickness of the medium
and on the angular discretization. This increase is mainly due to the slower
convergence rate of the HO resolution schemes, which implies more iterations to attain
the same convergence criterion. In the case of optically thin media (7, = 0.1), that
factor is about 7 for 2 X 2 control angle elements per octant, and decreases up to about
4 for 6 X 6 control angle elements per octant. In the case of optically thick media
(17, = 5.0), the CPU time of HO resolution schemes is about three times higher than that
of the STEP scheme for 2 X 2 control angle elements per octant, and decreases to
about 2.5 times higher for 6 X 6 control angle elements per octant. The emissivity of
the boundaries has only a marginal influence on these factors.

The computational requirements of the different HO resolution schemes are about
the same for all of them, the MINMOD being marginally more economical than the
others, and the SMART slightly more computationally intensive. From these results, it
can be concluded that the use of HO resolution schemes for the present test case only
pays off in the case of optically thick media.

Two-dimensional isotropically scattering medium

The previous test case was one-dimensional, and so only streamwise diffusion was
present. In multidimensional problems, when gradients of the transported variable
exist perpendicular to the transport direction and this direction is oblique to the grid
lines, crosswise diffusion takes place in addition to streamwise diffusion.

A two-dimensional square enclosure with black walls is considered here. The medium
scatters isotropically, and there is neither emission nor absorption. Notice that this is
equivalent to an emitting-absorbing and non-scattering medium in radiative equilibrium.
The optical thickness of the medium is equal to one. The top boundary is hot, with an
emissive power of unity, while the other boundaries are cold. The quasi-exact solution
reported in Crosbie and Schrenker (1984) is taken as the reference solution.

The calculations were carried out using a 10 X 10 uniform grid and 2 X 2,3 X 3,
4 X 4,5 x 5and 6 X 6 control angle elements per octant. Figure 2 shows the mean
absolute error of the boundary heat flux and radiative heat source as a function of the
number of control angle elements per octant.

If the step scheme is used, the solution error firstly decreases, and then increases
with the angular refinement, except for the heat flux at the side wall, whose error
continuously increases. This behaviour is again a consequence of the interaction
between spatial and angular discretization errors. If both the spatial and angular
discretizations are coarse, the error compensation may yield relatively small errors, but
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Figure 2.

Mean absolute error

(@) normalized heat flux at
the top boundary;

(b) normalized heat flux at
the bottom boundary;

(c) normalized heat flux
along the side boundary;
(d) source function along
the symmetry plane of the
enclosure
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as the angular refinement takes place, the large spatial discretization error is no longer
compensated and contributes to increase the solution error.

The HO resolution schemes yield larger errors than the step scheme for a coarse
angular discretization. In fact, although the HO resolution schemes are more accurate,
and yield a lower spatial discretization error than the step scheme, the angular
discretization error is large for a coarse angular discretization, and is responsible for a
higher solution error. If the step scheme is used, then both high spatial and angular
discretization errors are present, but since they have opposite effects, there is an error
compensation that justifies the smaller solution error in comparison with the HO
schemes. When the number of control angle elements increases, the lower spatial error
of the HO schemes along with the decrease of the angular discretization error yields a
continuous decrease of the solution error. Therefore, for a sufficiently fine angular
discretization, HO schemes perform better than the step scheme. The difference
between the various HO schemes is visible, but marginal.

As in the previous test case, the CPU time needed to achieve convergence is greater
for the HO resolution schemes than for the STEP scheme. The ratio of the CPU time of
the HO resolution schemes to the CPU time of the STEP scheme ranges from about 2, in
the case of 6 X 6 control angle elements per octant, to about 5 in the case of only 2 X 2



control angle elements per octant. As an example, the CPU time for the CLAM scheme
with 4 X 4 control angle elements per octant is similar to that of the STEP scheme
with 5 X 5 control angle elements. Since, the accuracy of the CLAM scheme is better
than that of the STEP scheme with such angular discretizations, the use of
high-resolution schemes is recommended.

Although only purely scattering media have been considered in the two test cases
presented here, other test cases reported in Coelho (2005a, b, 2006) demonstrate the
suitability of the HYDRA method for the full range of scattering albedos from 0 to 1, as
well as for optical thickness ranging from 0.1 to 1.0, and for either grey or black
boundary surfaces. Moreover, a comparison of the accuracy of the HYDRA method
with the DOM using either the STEP scheme or HO spatial resolution schemes has
recently been reported in Coelho (2006).

So far, only rectangular geometries have been simulated. The extension of the
present method to irregular geometries is in progress, and should not present any
major problems. It is also expected to observe the same trend of error in irregular
geometries, but this is subject to future confirmation.

Conclusion

Several HO resolution schemes have been applied to the spatial discretization of a
hybrid finite volume/finite element method for the solution of the RTE in enclosures
with a grey medium, and compared with the step scheme. The results reveal an
interaction between spatial and angular discretization errors, and show that the HO
resolution schemes yield improved accuracy over the step scheme if the angular
discretization error is small.
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